Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. j. med. biol. res ; 46(9): 746-751, 19/set. 2013. graf
Artigo em Inglês | LILACS | ID: lil-686569

RESUMO

Macrophage migration inhibitory factor (MIF), a pleiotropic cytokine, plays an important role in the pathogenesis of atrial fibrillation; however, the upstream regulation of MIF in atrial myocytes remains unclear. In the present study, we investigated whether and how MIF is regulated in response to the renin-angiotensin system and oxidative stress in atrium myocytes (HL-1 cells). MIF protein and mRNA levels in HL-1 cells were assayed using immunofluorescence, real-time PCR, and Western blot. The result indicated that MIF was expressed in the cytoplasm of HL-1 cells. Hydrogen peroxide (H2O2), but not angiotensin II, stimulated MIF expression in HL-1 cells. H2O2-induced MIF protein and gene levels increased in a dose-dependent manner and were completely abolished in the presence of catalase. H2O2-induced MIF production was completely inhibited by tyrosine kinase inhibitors genistein and PP1, as well as by protein kinase C (PKC) inhibitor GF109203X, suggesting that redox-sensitive MIF production is mediated through tyrosine kinase and PKC-dependent mechanisms in HL-1 cells. These results suggest that MIF is upregulated by HL-1 cells in response to redox stress, probably by the activation of Src and PKC.


Assuntos
Animais , Camundongos , Peróxido de Hidrogênio/farmacologia , Oxirredutases Intramoleculares/efeitos dos fármacos , Fatores Inibidores da Migração de Macrófagos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Oxidantes/farmacologia , Proteína Quinase C/metabolismo , Quinases da Família src/metabolismo , Angiotensina II/metabolismo , Western Blotting , Linhagem Celular , Imuno-Histoquímica , Oxirredutases Intramoleculares/genética , Microscopia Confocal , Fatores Inibidores da Migração de Macrófagos/genética , Estresse Oxidativo/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Sistema Renina-Angiotensina/fisiologia
2.
Braz. j. med. biol. res ; 44(12): 1231-1242, Dec. 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-606547

RESUMO

The mitogenic effects of periodic mechanical stress on chondrocytes have been studied extensively but the mechanisms whereby chondrocytes sense and respond to periodic mechanical stress remain a matter of debate. We explored the signal transduction pathways of chondrocyte proliferation and matrix synthesis under periodic mechanical stress. In particular, we sought to identify the role of the MEK1/2-ERK1/2 signaling pathway in chondrocyte proliferation and matrix synthesis following cyclic physiologic mechanical compression. Under periodic mechanical stress, both rat chondrocyte proliferation and matrix synthesis were significantly increased (P < 0.05) and were associated with increases in the phosphorylation of Src, PLCγ1, MEK1/2, and ERK1/2 (P < 0.05). Pretreatment with the MEK1/2-ERK1/2 selective inhibitor, PD98059, and shRNA targeted to ERK1/2 reduced periodic mechanical stress-induced chondrocyte proliferation and matrix synthesis (P < 0.05), while the phosphorylation levels of Src-Tyr418 and PLCγ1-Tyr783 were not inhibited. Proliferation, matrix synthesis and phosphorylation of MEK1/2-Ser217/221 and ERK1/2-Thr202/Tyr204 were inhibited after pretreatment with the PLCγ1 inhibitor U73122 in chondrocytes in response to periodic mechanical stress (P < 0.05), while the phosphorylation site of Src-Tyr418 was not affected. Inhibition of Src activity with PP2 and shRNA targeted to Src abrogated chondrocyte proliferation and matrix synthesis (P < 0.05) and attenuated PLCγ1, MEK1/2 and ERK1/2 activation in chondrocytes subjected to periodic mechanical stress (P < 0.05). These findings suggest that periodic mechanical stress promotes chondrocyte proliferation and matrix synthesis in part through the Src-PLCγ1-MEK1/2-ERK1/2 signaling pathway, which links these three important signaling molecules into a mitogenic cascade.


Assuntos
Animais , Ratos , Condrócitos/citologia , Condrócitos/enzimologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Estresse Mecânico , Sistema de Sinalização das MAP Quinases/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Mitógenos/metabolismo , Fosfolipase C gama/metabolismo , Ratos Sprague-Dawley , Quinases da Família src/metabolismo
3.
Yonsei Medical Journal ; : 522-526, 2011.
Artigo em Inglês | WPRIM | ID: wpr-181466

RESUMO

Helicobacter pylori (H. pylori) is an important risk factor for chronic gastritis, peptic ulcer, and gastric cancer. Proteinase-activated receptor 2 (PAR2), subgroup of G-protein coupled receptor family, is highly expressed in gastric cancer, and chronic expression of cyclooxygenase-2 (COX-2) plays an important role in H. pylori-associated gastric carcinogenesis and inflammation. We previously demonstrated that H. pylori induced the expression of PAR2 and COX-2 in gastric epithelial cells. Present study aims to investigate whether COX-2 expression induced by H. pylori in Korean isolates is mediated by PAR2 via activation of Gi protein and Src kinase in gastric epithelial AGS cells. Results showed that H. pylori-induced COX-2 expression was inhibited in the cells transfected with antisense oligonucleotide for PAR2 or treated with Gi protein blocker pertussis toxin, Src kinase inhibitor herbimycin A and soybean trypsin inbitor, indicating that COX-2 expression is mediated by PAR2 through activation of Gi protein and Src kinase in gastric epithelial cells infected with H. pylori in Korean isolates. Thus, targeting the activation of PAR2 may be beneficial for prevention or treatment of gastric inflammation and carcinogenesis associated with H. pylori infection.


Assuntos
Humanos , Benzoquinonas/farmacologia , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/genética , Células Epiteliais/enzimologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Mucosa Gástrica/enzimologia , Helicobacter pylori , Lactamas Macrocíclicas/farmacologia , Oligonucleotídeos Antissenso , Toxina Pertussis/farmacologia , RNA Mensageiro/metabolismo , Receptor PAR-2/fisiologia , Quinases da Família src/metabolismo
4.
Experimental & Molecular Medicine ; : 777-786, 2010.
Artigo em Inglês | WPRIM | ID: wpr-122638

RESUMO

Endoplasmic reticulum (ER) stress regulates a wide range of cellular responses including apoptosis, proliferation, inflammation, and differentiation in mammalian cells. In this study, we observed the role of 2-deoxy-D-glucose (2DG) on inflammation of chondrocytes. 2DG is well known as an inducer of ER stress, via inhibition of glycolysis and glycosylation. Treatment of 2DG in chondrocytes considerably induced ER stress in a dose- and time-dependent manner, which was demonstrated by a reduction of glucose regulated protein of 94 kDa (grp94), an ER stress-inducible protein, as determined by a Western blot analysis. In addition, induction of ER stress by 2DG led to the expression of COX-2 protein with an apparent molecular mass of 66-70kDa as compared with the normally expressed 72-74 kDa protein. The suppression of ER stress with salubrinal (Salub), a selective inhibitor of eif2-alpha dephosphorylation, successfully prevented grp94 induction and efficiently recovered 2DG-modified COX-2 molecular mass and COX-2 activity might be associated with COX-2 N-glycosylation. Also, treatment of 2DG increased phosphorylation of Src in chondrocytes. The inhibition of the Src signaling pathway with PP2 (Src tyrosine kinase inhibitor) suppressed grp94 expression and restored COX-2 expression, N-glycosylation, and PGE2 production, as determined by a Western blot analysis and PGE2 assay. Taken together, our results indicate that the ER stress induced by 2DG results in a decrease of the transcription level, the molecular mass, and the activity of COX-2 in rabbit articular chondrocytes via a Src kinase-dependent pathway.


Assuntos
Animais , Coelhos , Cartilagem Articular/patologia , Células Cultivadas , Condrócitos/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Desoxiglucose/farmacologia , Regulação para Baixo , Retículo Endoplasmático/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Inflamação , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Quinases da Família src/metabolismo
5.
Experimental & Molecular Medicine ; : 387-396, 2009.
Artigo em Inglês | WPRIM | ID: wpr-196698

RESUMO

Angiotensin II (Ang II) stimulates migration of vascular smooth muscle cell (VSMC) in addition to its contribution to contraction and hypertrophy. It is well established that Rho GTPases regulate cellular contractility and migration by reorganizing the actin cytoskeleton. Ang II activates Rac1 GTPase, but its upstream guanine nucleotide exchange factor (GEF) remains elusive. Here, we show that Ang II-induced VSMC migration occurs in a betaPIX GEF-dependent manner. betaPIX-specific siRNA treatment significantly inhibited Ang II-induced VSMC migration. Ang II activated the catalytic activity of betaPIX towards Rac1 in dose- and time-dependent manners. Activity reached a peak at 10 min and declined close to a basal level by 30 min following stimulation. Pharmacological inhibition with specific kinase inhibitors revealed the participation of protein kinase C, Src family kinase, and phosphatidylinositol 3-kinase (PI3-K) upstream of betaPIX. Both p21-activated kinase and reactive oxygen species played key roles in cytoskeletal reorganization downstream of betaPIX-Rac1. Taken together, our results suggest that betaPIX is involved in Ang II-induced VSMC migration.


Assuntos
Animais , Ratos , Fosfatidilinositol 3-Quinase/metabolismo , Angiotensina II/metabolismo , Movimento Celular , Células Cultivadas , Fatores de Troca do Nucleotídeo Guanina/genética , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , NADPH Oxidases/metabolismo , Proteína Quinase C/metabolismo , RNA Interferente Pequeno/genética , Ratos Sprague-Dawley , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo
6.
Experimental & Molecular Medicine ; : 118-124, 2003.
Artigo em Inglês | WPRIM | ID: wpr-18466

RESUMO

Pervanadate, a complex of vanadate and H2O2, has an insulin mimetic effect, and acts as an inhibitor of protein tyrosine phosphatase. Pervanadate-induced phospholipase D (PLD) activation is known to be dependent on the tyrosine phosphorylation of cellular proteins and protein kinase C (PKC) activation, and yet underlying molecular mechanisms are not clearly understood. Here, we investigated the signaling pathway of pervanadate-induced PLD activation in Rat2 fibroblasts. Pervanadate increased PLD activity in dose- and time- dependent manner. Protein tyrosine kinase inhibitor, genistein, blocked PLD activation. Interestingly, AG-1478, a specific inhibitor of the tyrosine kinase activity of epidermal growth factor receptor (EGFR) blocked not only the PLD activation completely but also phosphorylation of p38 mitogen- activated protein kinase (MAPK). However, AG-1295, an inhibitor specific for the tyrosine kinase activity of pletlet drived growth factor receptor (PDGFR) did not show any effect on the PLD activation by pervanadate. We further found that pervanadate increased phosphorylation levels of p38, extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK). SB203580, a p38 MAPK inhibitor, blocked the PLD activation completely. However, the inhibitions of ERK by the treatment of PD98059 or of JNK by the overexpression of JNK interacting peptide JBD did not show any effect on pervanadate-induced PLD activation. Inhibition or down-regulation of PKC did not alter the pervanadate-induced PLD activation in Rat2 cells. Thus, these results suggest that pervanadate-induced PLD activation is coupled to the transactivation of EGFR by pervanadate resulting in the activation of p38 MAP kinase.


Assuntos
Animais , Ratos , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Fibroblastos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfolipase D/metabolismo , Receptores ErbB/agonistas , Vanadatos/farmacologia , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA